Results of Proficiency Test Transformer Oil (fresh) November 2019 Organised by: Institute for Interlaboratory Studies Spijkenisse, the Netherlands Author: A. Lewinska, MSc. ing. A.S. Noordman-de Neef & ing. L. Sweere Correctors: Report: iis19L11 January 2020 ### CONTENTS | 1 | INTRODUCTION | 3 | |-----|---|----| | 2 | SET UP | 3 | | 2.1 | ACCREDITATION | 3 | | 2.2 | PROTOCOL | 3 | | 2.3 | CONFIDENTIALITY STATEMENT | 3 | | 2.4 | SAMPLES | 4 | | 2.5 | STABILITY OF THE SAMPLES | 4 | | 2.6 | ANALYSES | 5 | | 3 | RESULTS | 5 | | 3.1 | STATISTICS | 6 | | 3.2 | GRAPHICS | 6 | | 3.3 | Z-SCORES | 7 | | 4 | EVALUATION | 7 | | 4.1 | EVALUATION PER TEST | 8 | | 4.2 | PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES | 10 | | 4.3 | COMPARISON OF PROFICIENCY TEST OF NOVEMBER 2019 WITH PREVIOUS PTs | 10 | ### Appendices: | 1. | Data, statistical and graphic results | 12 | |----|---------------------------------------|----| | 2. | Other reported test results | 38 | | 3. | Number of participants per country | 39 | | 4. | Abbreviations and literature | 40 | ### 1 Introduction Since 2001, the Institute for Interlaboratory Studies organizes a proficiency test for the analysis of Transformer Oil (fresh) every year. During the annual proficiency testing program of 2019/2020, it was decided to continue with the proficiency tests on Transformer Oil (fresh) in accordance with the latest applicable version of the specification IEC60296 and ASTM D3487. In this interlaboratory study 52 laboratories from 31 different countries registered for participation. See appendix 3 for a list of number of participants per country. In this report, the results of the 2019 Transformer Oil (fresh) proficiency test are presented and discussed. This report is also electronically available through the iis website www.iisnl.com. ### 2 SET UP The Institute for Interlaboratory Studies (iis) in Spijkenisse, the Netherlands, was the organiser of this proficiency test (PT). Sample analyses for fit-for-use and homogeneity testing were subcontracted to an ISO/IEC17025 accredited laboratory. It was decided to send one bottle of 1L labelled #19240 of Transformer Oil (fresh). The participants were requested to report rounded and unrounded test results. The unrounded test results were preferably used for statistical evaluation. ### 2.1 ACCREDITATION The Institute for Interlaboratory Studies in Spijkenisse, the Netherlands, is accredited in agreement with ISO/IEC17043:2010 (R007), since January 2000, by the Dutch Accreditation Council (Raad voor Accreditatie). This PT falls under the accredited scope. This ensures strict adherence to protocols for sample preparation and statistical evaluation and 100% confidentiality of participant's data. Feedback from the participants on the reported data is encouraged and customer's satisfaction is measured on regular basis by sending out questionnaires. ### 2.2 PROTOCOL The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organization, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5). This protocol is electronically available through the iis website www.iisnl.com, from FAQ page. #### 2.3 CONFIDENTIALITY STATEMENT All data presented in this report must be regarded as confidential and for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission of the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved. #### 2.4 SAMPLES Approximately 75 liters of Transformer Oil (fresh) was obtained from a local supplier. After homogenisation 70 amber glass bottles of 1 liter were filled and labelled #19240. The homogeneity of the subsamples #19240 was checked by determination of Density in accordance with ASTM D4052 on 8 stratified randomly selected samples. | | Density at 20°C
in kg/m³ | |-----------------|-----------------------------| | Sample #19240-1 | 863.96 | | Sample #19240-2 | 863.96 | | Sample #19240-3 | 863.95 | | Sample #19240-4 | 863.96 | | Sample #19240-5 | 863.96 | | Sample #19240-6 | 863.96 | | Sample #19240-7 | 863.96 | | Sample #19240-8 | 863.96 | Table 1: homogeneity test results of subsamples #19240 From the above test results, the repeatability was calculated and compared with 0.3 times the corresponding reproducibility of the reference test method in agreement with the procedure of ISO13528, Annex B2 in the next table. | | Density at 20°C
in kg/m³ | |----------------------------|-----------------------------| | r (observed) | 0.01 | | reference test method | ISO3675:98 | | 0.3 x R (ref. test method) | 0.36 | Table 2: evaluation of the repeatability of subsamples #19240 The calculated repeatability was less than 0.3 times the corresponding reproducibility of the reference test method. Therefore, homogeneity of the subsamples was assumed. To each of the participating laboratories, 1 bottle of 1L labelled #19240 was sent on October 23, 2019. An SDS was added to the sample package. ### 2.5 STABILITY OF THE SAMPLES The stability of Transformer Oil (fresh) packed in amber glass bottles was checked. The material was found sufficiently stable for the period of the proficiency test. #### 2.6 ANALYSES The participants were requested to determine on sample #19240: Acidity Total (Potentiometric and Colorimetric), Appearance, Breakdown Voltage, Color ASTM, Density at 20°C, Di-electric loss at 90°C (Di-electric Dissipation Factor and Specific Resistance), Flash Point (C.O.C. and PMcc), Interfacial Surface Tension, Kinematic Viscosity at 40°C, Water and Additives (DBP, DBPC, DBDS, BTA and Irgamet 39). Also extra questions regarding frequency of Di-electric Dissipation Factor and the Breakdown Voltage were requested. It was explicitly requested to treat the sample as if it was a routine sample and to report the test results using the indicated units on the report form and not to round the test results but report as much significant figures as possible. It was also requested not to report 'less than' results, which are above the detection limit, because such test results cannot be used for meaningful statistical evaluations. To get comparable test results, a detailed report form and a letter of instructions are prepared. On the report form the reporting units are given as well as the appropriate reference test methods that will be used during the evaluation. The detailed report form and the letter of instructions are both made available on the data entry portal www.kpmd.co.uk/sgs-iis/. The participating laboratories are also requested to confirm the sample receipt on this data entry portal. The letter of instructions can also be downloaded from the iis website www.iisnl.com. ### 3 RESULTS During five weeks after sample dispatch the test results of the individual laboratories were gathered via the data entry portal www.kpmd.co.uk/sgs-iis/. The reported test results are tabulated per determination in appendix 1 and 2 of this report. The laboratories are presented by their code numbers. Directly after the deadline, a reminder was sent to those laboratories that had not reported test results at that moment. Shortly after the deadline, the available test results were screened for suspect data. A test result was called suspect in case the Huber Elimination Rule (a robust outlier test) found it to be an outlier. The laboratories that produced these suspect data were asked to check the reported test results (no reanalyses). Additional or corrected test results are used for data analysis and original test results are placed under 'Remarks' in the result tables in appendix 1 or 2. Test results that came in after the deadline were not taken into account in this screening for suspect data and thus these participants were not requested for checks. #### 3.1 STATISTICS The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5). For the statistical evaluation the *unrounded* (when available) figures were used instead of the rounded test results. Test results reported as '<...' or '>...' were not used in the statistical evaluation. First, the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test, a variant of the Kolmogorov-Smirnov test and by the calculation of skewness and kurtosis. Evaluation of the three normality indicators in combination with the visual evaluation of the graphic Kernel density plot, lead to judgement of the normality being either 'unknown', 'OK', 'suspect' or 'not OK'. After removal of outliers, this check was repeated. If a data set does not have a normal distribution, the (results of the) statistical evaluation should be used with due care. According to ISO5725 the original test results per determination were submitted to Dixon's, Grubbs' and/or Rosner's outlier tests. Outliers are marked by D(0.01) for the Dixon's test, by G(0.01) or DG(0.01) for the Grubbs' test and by R(0.01) for the Rosner's test. Stragglers are marked by D(0.05) for the Dixon's test, by G(0.05) or DG(0.05) for the Grubbs' test and by R(0.05) for the Rosner's test. Both outliers and stragglers were not included in the calculations of averages and standard deviations. For each assigned value, the uncertainty was determined in accordance with ISO13528. Subsequently the calculated uncertainty was evaluated against the respective requirement based on the target reproducibility in accordance
with ISO13528. In this PT, the criterion of ISO13528, paragraph 9.2.1, was met for all evaluated tests, therefore, the uncertainty of all assigned values may be negligible and need not be included in the PT report. Finally, the reproducibilities were calculated from the standard deviations by multiplying them with a factor of 2.8. ### 3.2 GRAPHICS In order to visualize the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for one determination (see appendix 1). On the Y-axis the reported test results are plotted. The corresponding laboratory numbers are on the X-axis. The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected reference test method. Outliers and other data, which were excluded from the calculations, are represented as a cross. Accepted data are represented as a triangle. Furthermore, Kernel Density Graphs were made. This is a method for producing a smooth density approximation to a set of data that avoids some problems associated with histograms. Also, a normal Gauss curve was projected over the Kernel Density Graph for reference. #### 3.3 Z-SCORES To evaluate the performance of the participating laboratories the z-scores were calculated. As it was decided to evaluate the performance of the participants in this proficiency test (PT) against the literature requirements, e.g. ISO or ASTM reproducibilities, the z-scores were calculated using a target standard deviation. This results in an evaluation independent of the variation in this interlaboratory study. The target standard deviation was calculated from the literature reproducibility by division with 2.8. In case no literature reproducibility was available, other target values were used. In some cases, a reproducibility based on former iis proficiency tests could be used. When a laboratory did use a test method with a reproducibility that is significantly different from the reproducibility of the reference test method used in this report, it is strongly advised to recalculate the z-score, while using the reproducibility of the actual test method used, this in order to evaluate whether the reported test result is fit-for-use. The z-scores were calculated according to: ``` z_{\text{(target)}} = \text{(test result - average of PT)} / \text{target standard deviation} ``` The $z_{\text{(target)}}$ scores are listed in the result tables of appendix 1. Absolute values for z<2 are very common and absolute values for z>3 are very rare. The usual interpretation of z-scores is as follows: ``` |z| < 1 good 1 < |z| < 2 satisfactory 2 < |z| < 3 questionable 3 < |z| unsatisfactory ``` #### 4 EVALUATION In this proficiency test no major problems were encountered with the dispatch of the samples. One participant reported the test results after the final reporting date and four participants did not report any test results at all. Not all participants were able to report test results for all analyses requested. In total 48 participants reported 377 numerical test results. Observed were 24 outlying test results, which is 6.4% of the numerical test results. In proficiency studies, outlier percentages of 3% - 7.5% are quite normal. Not all original data sets proved to have a normal Gaussian distribution. These are referred to as "not OK" or "suspect". The statistical evaluation of these data sets should be used with due care, see also paragraph 3.1. #### 4.1 EVALUATION PER TEST In this section the reported test results are discussed per test. The test methods, which were used by the various laboratories were taken into account for explaining the observed differences when possible and applicable. These test methods are also in the tables together with the original data. The abbreviations, used in these tables, are explained in appendix 4. Acidity, Total (Potentiometric): The total Acidity was below the quantification limit of 0.014 mg KOH/g as given in test method EN62021-1:03. Therefore, no z-sores were calculated. <u>Acidity, Total (Colorimetric)</u>: This determination was not problematic. Two statistical outliers were observed. However, the calculated reproducibility after the rejection of the statistical outliers is in agreement with the requirements of ASTM D974:14e2. <u>Appearance</u>: All reporting laboratories agreed on the appearance of the oil being 'Bright and Clear' or remarked in similar words to this. Breakdown Voltage: This determination was not problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is in agreement with the requirements of EN60156:95. In the previous PT of 2018 the difference in consensus value between stirring and not stirring was not significant. In this PT the difference was larger and significant. However, it was decided to calculate the assigned value over all test results as stirring and not stirring is allowed per EN60156:95 and the reproducibility of the group is below the requirements of test method EN60156:95. The reproducibility of EN60156:95 was determined from Figure 3 of method EN60156:95, according to the iis memo 1702 (see lit. 17). Color ASTM: This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in agreement with the requirements of ASTM D1500:12(2017). Please note: the test values reported as "text" (e.g. L0.5) were converted to a numerical value before calculating z-scores, see also appendix 1. <u>Density at 20°C</u>: This determination was problematic for a number of participants. Six statistical outliers were observed. However, the calculated reproducibility after rejection of the statistical outliers is in agreement with the requirements of ISO3675:98. DD-Factor: This determination was not problematic. Two statistical outliers were observed. However, the calculated reproducibility after rejection of the statistical outliers is in agreement with the requirements of EN60247:04. - Specific Resistance: This determination was problematic. Four statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is not in agreement with the requirements of EN60247:04. Please note that it is well known that specific resistance of new oils can vary over a wide range. This is due to randomly tiny amounts of impurities (maybe present in the air or in the test cell) which can dramatically change the value. In used oils, however, due to already present ion flow of the polar compounds, these problems are not observed. - <u>Flash Point COC</u>: This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in agreement with the requirements of ASTM D92:18. - <u>Flash Point PMcc</u>: This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in agreement with the requirements of ISO2719-A:16. - Interfacial Surface Tension: This determination was not problematic. Two statistical outliers were observed. However, the calculated reproducibility after rejection of the statistical outliers is in full agreement with the requirements of ASTM D971:12. - <u>Kinematic Viscosity:</u> This determination was problematic. Three statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is not in agreement with the requirements of ASTM D445:19 and ISO3104:94. - Water: This determination was problematic. Four statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is not in agreement with the requirements of EN60814:98. - Anti-oxidant additives: The majority of the participants agreed that DBP (2,6-Di-tertiary-butyl phenol), DBPC (2,6-Ditertiary-butyl paracresol) DBDS (Dibenzyl disulphide), BTA (Benzotriazole) and Irgamet 39 were below the level of quantification. Therefore, these components were not further evaluated. The reported test results are given in appendix 2. #### 4.2 Performance evaluation for the group of Laboratories A comparison has been made between the reproducibility as declared by the relevant reference test method and the reproducibility as found for the group of participating laboratories. The number of significant test results, the average result, the calculated reproducibility (2.8 * standard deviation) and the target reproducibility derived from literature reference test methods (e.g. ASTM, EN and ISO test methods) are presented in the next table. | Parameter | unit | n | average | 2.8 * sd | R(lit) | |-------------------------------------|-----------|----|---------|----------|---------| | Acidity, Total (Potentiometric) | mg KOH/g | 23 | 0.009 | 0.014 | (0.002) | | Acidity, Total (Colorimetric) | mg KOH/g | 19 | 0.007 | 0.014 | 0.04 | | Appearance | | 30 | B&C | n.a. | n.a. | | Breakdown Voltage | kV/2.5 mm | 41 | 65.6 | 36.2 | 47.2 | | Color ASTM | | 37 | 0.21 | 0.28 | 1 | | Density at 20°C | kg/m³ | 33 | 863.99 | 0.74 | 1.2 | | Di-electric Dissipation Factor 90°C | | 34 | 0.0006 | 0.0010 | 0.0014 | | Specific Resistance at 90°C | GΩm | 22 | 566.5 | 771.1 | 594.8 | | Flash Point C.O.C. | °C | 16 | 155.5 | 12.4 | 18 | | Flash Point PMcc | ů | 28 | 147.1 | 9.1 | 10.5 | | Interfacial Surface Tension | mN/m | 33 | 47.3 | 5.1 | 4.7 | | Kinematic Viscosity at 40°C | mm²/s | 32 | 9.02 | 0.14 | 0.11 | | Water | mg/kg | 35 | 8.2 | 5.5 | 4.3 | Table 3: reproducibilities of tests on sample #19240 Results between brackets were near or below detection limit, these results should be used with care B&C = Bright and Clear Without further statistical calculations, it can be concluded that for most tests there is a good compliance of the group of participating laboratories with the relevant reference test methods. The problematic tests have been discussed in
paragraph 4.1 #### 4.3 COMPARISON OF THE PROFICIENCY TEST OF NOVEMBER 2019 WITH PREVIOUS PTs. | | November 2019 | November
2018 | November
2017 | November
2016 | November
2015 | |----------------------------------|---------------|------------------|------------------|------------------|------------------| | Number of reporting laboratories | 48 | 50 | 55 | 51 | 49 | | Number of results reported | 377 | 371 | 405 | 383 | 330 | | Number of statistical outliers | 24 | 24 | 18 | 29 | 26 | | Percentage statistical outliers | 6.4% | 6.5% | 4.4% | 7.6% | 7.9% | Table 4: comparison with previous proficiency tests In proficiency tests, outlier percentages of 3% - 7.5% are guite normal. The performance of the determinations of the proficiency tests was compared against the requirements of the reference test methods. The conclusions are given the following table. | Parameter | November 2019 | November
2018 | November
2017 | November
2016 | November
2015 | |---------------------------------|---------------|------------------|------------------|------------------|------------------| | Acidity, Total (Potentiometric) | () | () | () | () | () | | Acidity, Total (Colorimetric) | ++ | ++ | ++ | ++ | n.e. | | Breakdown Voltage | + | +/- | - | ++ | ++ | | Color ASTM | ++ | n.e. | n.e. | n.e. | n.e. | | Density at 20°C | + | ++ | ++ | ++ | + | | Di-electric Dissipation Factor | + | + | + | + | ++ | | Specific Resistance | - | - | | | | | Flash Point C.O.C. | + | + | - | +/- | n.e. | | Flash Point PMcc | + | + | +/- | + | +/- | | Interfacial Surface Tension | +/- | +/- | - | +/- | | | Kinematic Viscosity at 40°C | - | +/- | - | +/- | - | | Water | - | +/- | - | +/- | - | | DBPC Antioxidant Additive | n.e. | + | +/- | n.e. | n.e. | Table 5. comparison of group performances against the reference test methods Results between brackets were near or below detection limit, these results should be used with care The performance of the determinations against the requirements of the reference test methods is listed in the above table. The following performance categories were used: ++: group performed much better than the reference test method + : group performed better than the reference test method +/-: group performance equals the reference test method - : group performed worse than the reference test method -- : group performed much worse than the reference test method n.e.: not evaluated Determination of Acidity, Total (Potentiometric) on sample #19240; results in mg KOH/g | lab | method | value | mark | z(targ) | ole #19240; results in mg KOH/g remarks | |--------------|-----------------------------------|---------------------|------|---------|---| | 173 | 3 | | | | | | 179 | D664 | 0.02 | | | | | 325 | D664-A | <0.01 | | | | | 360 | DCC4 A | 0.044 | | | | | 398
446 | D664-A | 0.011
 | | | | | 614 | | | | | | | 862 | D664-A | 0.01 | | | | | 912 | | | | | | | 913 | | | | | | | 963 | | | | | | | 974 | | | | | | | 1137
1146 | D664-A | 0.016 | | | | | 1178 | IEC62021-1 | 0.010 | | | | | 1262 | EN62021-1 | 0.0160 | | | | | 1264 | D664-A | 0.009 | | | | | 1304 | | | | | | | 1306 | | | | | | | 1326 | EN62021-1 | 0.0063 | | | | | 1442
1444 | | | | | | | 1461 | | | | | | | 1478 | IEC62021-1 | 0.0054 | | | | | 1513 | IEC62021-1 | 0.006 | | | | | 1560 | IEC62021-1 | 0.007 | | | | | 1626 | 1500004.4 | | | | | | 1660 | IEC62021-1 | 0.004 | | | | | 1687
1702 | D664-A
IEC62021-1 | 0.000
0.007 | | | | | 1719 | D664-A | 0.011 | | | | | 1743 | EN62021-1 | <0.02 | | | | | 1801 | EN62021-1 | 0.013 | | | | | 1885 | | | | | | | 1890 | ISO6619 | 0.014 | | | | | 6000
6015 | | | | | | | 6048 | | | | | | | 6053 | IEC62021-1 | 0.008 | С | | first reported 0.083 | | 6067 | IEC62021-1 | 0.009 | | | 1 | | 6071 | D664-A | <0.01 | | | | | 6080 | D664-A | 0.002 | | | | | 6085 | IE000004 4 | 0.0005 | | | | | 6088
6099 | IEC62021-1
IEC62021-1 | 0.0025
0.006 | | | | | 6141 | D664-A | 0.01250 | | | | | 6167 | 2001.71 | | | | | | 6169 | | | | | | | 6181 | | | | | | | 6253 | | | | | | | 6278 | | | | | | | 6280 | | | | | | | | normality | OK | | | | | | n | 23 | | | | | | outliers | 0 | | | | | | mean (n) | 0.0087 | | | | | | st.dev. (n) | 0.00499 | | | | | | R(calc.)
st.dev.(EN62021-1:03) | 0.0140
(0.00087) | | | | | | R(EN62021-1:03) | (0.0004) | | | Quantification limit EN62021-1:03 > 0.014 | | | , | (= = -) | | | | ### Determination of Acidity, Total (Colorimetric) on sample #19240; results in mg KOH/g | lab | method | value | mark | z(targ) | remarks | |--------------|--------------------------------|-------------------|-----------|---------------|--| | 173 | D074 | | D(0.04) | | | | 179
325 | D974 | 0.05 | R(0.01) | 3.00 | | | 360 | EN62021-2 | 0.0025 | | -0.33 | | | 398 | | | | | | | 446 | D974 | <0.02 | | | | | 614
862 | D974 | 0.02
0.007 | | 0.90
-0.01 | | | 912 | D974 | 0.007 | | -0.01 | | | 913 | D974 | <0.02 | | | | | 963 | D974 | 0.0068 | | -0.03 | | | 974 | D974 | 0.004 | | -0.22 | | | 1137
1146 | | | | | | | 1178 | | | | | | | 1262 | ISO6618 | 0.0115 | | 0.30 | | | 1264 | D974 | 0.012 | | 0.34 | | | 1304 | in house-122
D974 | <0.01
0.00513 | |
-0.14 | | | 1306
1326 | D974 | 0.00515 | | -0.14 | | | 1442 | IEC62021-2 | <0,01 | | | | | 1444 | | | | | | | 1461 | | | | | | | 1478
1513 | IEC62021-2 | 0.006 | | -0.08 | | | 1560 | 12002021-2 | | | -0.00 | | | 1626 | D974 | 0.0036 | | -0.25 | | | 1660 | | | | | | | 1687
1702 | | | | | | | 1719 | | | | | | | 1743 | ISO6618 | 0.04 | C,R(0.01) | 2.30 | first reported 0.09 | | 1801 | D074 | | | | | | 1885
1890 | D974 | 0.001 | | -0.43
 | | | 6000 | | | | | | | 6015 | D974 | 0.010 | | 0.20 | | | 6048 | D974 | 0.01 | | 0.20 | | | 6053 | | | | | | | 6067
6071 | D974 | 0.009 | | 0.13 | | | 6080 | D974 | 0.002 | | -0.36 | | | 6085 | D974 | 0.0055 | | -0.12 | | | 6088 | | | | | | | 6099
6141 | D974 | 0.014 | | 0.48 | | | 6167 | 201. | | | | | | 6169 | | | | | | | 6181 | | | | | | | 6253
6278 | D974 | 0 | | -0.50 | | | 6280 | IEC62021-2 | 0.0066 | | -0.04 | | | | | | | | | | | normality | suspect
19 | | | | | | n
outliers | 2 | | | | | | mean (n) | 0.0072 | | | | | | st.dev. (n) | 0.00496 | | | | | | R(calc.)
st.dev.(D974:14e2) | 0.0139
0.01429 | | | Compare R(IEC62021-2:07) = 0.03 | | | R(D974:14e2) | 0.01429 | | | Quantification limit IEC62021-2:07: > 0.01 | | | , | | | | | # Determination of Appearance on sample #19240; | lab | method | value | mark | z(targ) | remarks | |--------------|------------------|------------------|------|---------|--| | 173 | Visual | Clear & Bright | | | | | 179 | | | | | | | 325 | Visual | Water White | | | | | 360 | Visual | Clear and Bright | | | | | 398 | Visual | Clear & Brigth | | | | | 446 | Visual | PASS | | | | | 614 | | | | | | | 862 | Visual | Clear & Bright | | | | | 912 | | | | | | | 913 | Visual | Clear & Bright | | | | | 963 | Visual | Clear & Bright | | | | | 974 | Visual | C & B | | | | | 1137 | | | | | | | 1146 | | | | | | | 1178 | Visual | bright, clear | | | | | 1262 | | bright and clear | | | | | 1264 | Visual | Clear | | | | | 1304 | | | | | | | 1306 | Visual | Clear | | | | | 1326 | | | | | | | 1442 | Visual | clear | | | | | 1444 | | | | | | | 1461 | .= | | | | | | 1478 | IEC60296 | clear | | | | | 1513 | Visual | Clear | | | | | 1560 | | Clear & Bright | | | | | 1626 | Visual | Clear&Bright | | | | | 1660 | Visual | Clear | | | | | 1687 | \ P 1 | | | | | | 1702 | Visual | Clear | | | | | 1719 | \ /iaal |
Ola a n | | | | | 1743 | Visual | Clear
 | | | | | 1801 | Vioual | | | | | | 1885 | Visual
Visual | clear bright | | | | | 1890
6000 | visuai | clear
 | | | | | 6015 | | | | | | | 6048 | Visual | clear & bright | | | | | 6053 | visuai | | | | | | 6067 | Visual | Clear | | | free from sediments and suspended matter | | 6071 | Visual | | | | nee nom sediments and suspended matter | | 6080 | Visual | clear & bright | | | | | 6085 | Viodai | | | | | | 6088 | Visual | bright and clear | | | | | 6099 | Visual | claire | | | | | 6141 | Visual | Clear and bright | | | | | 6167 | Viodai | | | | | | 6169 | | | | | | | 6181 | | | | | | | 6253 | | | | | | | 6278 | Visual | Clear and Bright | | | | | 6280 | | | | | | | | | | | | | | | n | 30 | | | | | | mean (n) | Clear and Bright | | | | -- Empty Page - ## Determination of Breakdown Voltage on sample #19240, results in kV/2.5 mm | lab | method | value | mark | z(targ) | stirred | remarks | |--------------|---------------------|--------------|----------|----------------|-------------------|-----------------------| | 173 | | | | | | | | 179 | D877 | 38.9 | | -1.58 | | | | 325 | | | | | | | | 360 | EN60156 | 42.5 | | -1.37 | Yes | | | 398 | EN60156 | 74.56 | | 0.53 | No | | | 446 | EN60156 | 50 | | -0.92 | Yes | | | 614 | EN60156 | 59.7 | | -0.35 | Yes | | | 862 | IEC60156 | 72.4 | | 0.41 | No | | | 912 | | | | | | | | 913 | | | | | | | | 963 | IEC60156 | 67.8 | | 0.13 | Yes | | | 974 | EN60156 | 59.4 | | -0.37 | Yes | | | 1137 | IEC00450 | | | 0.00 | Vaa | | | 1146
1178 | IEC60156 | 80
55.3 | | 0.86 | Yes | | | 1262 | EN60156
EN60156 | 68.2 | | -0.61
0.16 | Yes
 | | | 1262 | IEC60156 | 74.8 | | 0.10 | No | | | 1304 | in house-124 | 71.89 | | 0.38 | Yes | | | 1306 | 11110030 124 | | | | | | | 1326 | EN60156 | 81.4 | | 0.94 | | | | 1442 | IEC60156 | 55.74 | | -0.58 | Yes | | | 1444 | | | | | | | | 1461 | EN60156 | 65.9 | | 0.02 | | | | 1478 | IEC60156 | 47.0 | | -1.10 | Yes | | | 1513 | IEC60156 | 62.3 | | -0.19 | Yes | | | 1560 | IEC60156 | 61.3 | | -0.25 | Yes | | | 1626 | IEC60156 | 96.5 | | 1.84 | No | | | 1660 | IEC60156 | 68.2 | | 0.16 | Yes | | | 1687 | EN60156 | 77.2 | | 0.69 | No | | | 1702 | IEC60156 | 67.8 | | 0.13 | Yes | | | 1719 | IEC60156 | 61.1 | | -0.26 | Yes | | | 1743 | IEC60156 | 93 | | 1.63 | No | | | 1801 | EN60156
IEC60156 | 57.9
80.0
 | -0.45 | Yes
No | | | 1885
1890 | IEC60156 | 51.2 | | 0.86
-0.85 | Yes | | | 6000 | EN60156 | 19.2 | R(0.05) | -0.65
-2.75 | Yes | | | 6015 | EN60156 | 51.00 | 11(0.00) | -0.86 | Yes | | | 6048 | EN60156 | 79.7 | | 0.84 | Yes | | | 6053 | IEC60156 | 64.4 | | -0.07 | Yes | | | 6067 | IEC60156 | 66.2 | | 0.04 | Yes | | | 6071 | IEC60156 | 55.8 | | -0.58 | Yes | | | 6080 | IEC60156 | 50.8 | | -0.88 | Yes | | | 6085 | EN60156 | 61.9 | | -0.22 | Yes | | | 6088 | IEC60156 | 48 | | -1.04 | Yes | | | 6099 | IEC60156 | 74.3 | | 0.52 | No | | | 6141 | IEC60156 | 82 | | 0.98 | Yes | | | 6167 | IEC60156 | 68.3 | | 0.16 | | | | 6169 | | | | | | | | 6181 | | | | | | | | 6253 | IE000450 | 74.0 | | 0.50 |
N - | | | 6278 | IEC60156 | 74.0 | | 0.50 | No | | | 6280 | IEC60156 | 69.38 | | 0.23 | | | | | | | | | Results 'stirred' | Results 'not stirred' | | | normality | OK | | | OK | suspect | | | n | 41 | | | 26 | 9 | | | outliers | 1 | | | 1 | 0 | | | mean (n) | 65.56 | | | 60.73 | 79.64 | | | st.dev. (n) | 12.938 | | | 10.360 | 8.880 | | | R(calc.) | 36.23 | | | 29.01 | 24.86 | | | st.dev.(EN60156:95) | 16.861 | | | 16.861 | 16.861 | | | R(EN60156:95) | 47.21 | | | 43.73 | 57.35 | | | | | | | | | ### Determination of Color ASTM on sample #19240; | lab | method | reported test value | mark | iis conversion * | mark | z(targ) | remarks | |--------------|----------------------------------|---------------------|------|------------------|------|---------------|-----------------| | 173 | D1500 | L0.5 | | 0.25 | | 0.11 | | | 179 | | | | | | | | | 325 | D6045 | L0.5 | | 0.25 | | 0.11 | | | 360 | D1500 | L 0.5 | | 0.25 | | 0.11 | | | 398 | ISO2049 | L0,5 | | 0.25 | | 0.11 | | | 446 | D1500 | <0.5 | | 0.25 | | 0.11 | | | 614 | D1500 | <0.5 | | 0.25 | | 0.11 | | | 862 | D1500 | L0.5 | | 0.25 | | 0.11 | | | 912 | | | | | | | | | 913 | D1500 | L0.5 | | 0.25 | | 0.11 | | | 963 | D1500 | L0.5 | | 0.25 | | 0.11 | | | 974 | D1500 | L0.5 | | 0.25 | | 0.11 | | | 1137 | | | | | | | | | 1146 | 1000040 | | | | | | | | 1178 | ISO2049 | 0.3 | | 0.30 | | 0.25 | | | 1262 | ISO2049 | L 0.5 | | 0.25 | | 0.11 | | | 1264
1304 | D1500 | L0.5 | | 0.25 | | 0.11
-0.59 | | | | in house-131 | 0.0
0.0 | | 0.00
0.00 | | -0.59 | | | 1306
1326 | D1500 | 0.0
 | | 0.00 | | -0.59 | | | 1442 | ISO2049 | 0 | | 0.00 | | -0.59 | | | 1444 | 1002049 | | | | | -0.55 | | | 1461 | | | | | | | | | 1478 | ISO2049 | 0.1 | | 0.10 | | -0.31 | | | 1513 | ISO2049 | L0,5 | | 0.25 | | 0.11 | | | 1560 | ISO2049 | L0.5 | | 0.25 | | 0.11 | | | 1626 | D1500 | <0.5 | | 0.25 | | 0.11 | | | 1660 | D1500 | 0.0 | | 0.00 | | -0.59 | | | 1687 | | | | | | | | | 1702 | D1500 | L 0.5 | | 0.25 | | 0.11 | | | 1719 | D1524 | <0.5 | | 0.25 | | 0.11 | | | 1743 | ISO2049 | L0.5 | | 0.25 | | 0.11 | | | 1801 | ISO2049 | L0.5 | | 0.25 | | 0.11 | | | 1885 | D1500 | <0.5 | С | 0.25 | | 0.11 | reported < 0.05 | | 1890 | D1500 | <0.5 | | 0.25 | | 0.11 | | | 6000 | | | | | | | | | 6015 | | | | | | | | | 6048 | D1500 | 0.0 | | 0.00 | | -0.59 | | | 6053 | ISO2049 | L0.5 | | 0.25 | | 0.11 | | | 6067 | ISO2049 | L0.5 | | 0.25 | | 0.11 | | | 6071 | D4500 | 1.0.5 | | | | | | | 6080 | D1500 | L0.5 | | 0.25 | | 0.11 | | | 6085 | D1500
D1500 | <0.5
L0.5 | | 0.25 | | 0.11 | | | 6088
6099 | D1500 | 0.4 | | 0.25
0.40 | | 0.11
0.53 | | | 6141 | D1500 | L0.5 | | 0.40 | | 0.33 | | | 6167 | D1000 | | | | | | | | 6169 | | | | | | | | | 6181 | | | | | | | | | 6253 | | | | | | | | | 6278 | D1500 | 0.25 | | 0.25 | | 0.11 | | | 6280 | D1500 | 0 | | 0.00 | | -0.59 | | | | | | | | | | | | | normality | | | OK | | | | | | n | | | 37 | | | | | | outliers | | | 0 | | | | | | mean (n) | | | 0.21 | | | | | | st.dev. (n) | | | 0.101 | | | | | | R(calc.) | | | 0.28 | | | | | | st.dev.(D1500:12)
R(D1500:12) | | | 0.357
1 | | | | | | N(D 1000.12) | | | 1 | | | | ^{*}In the calculation of the mean, standard deviation and the reproducibility in this column, a reported value of 'L y' or '<y' is changed into y-0.25 (for example, L0.5 is changed into 0.25). ### Determination of Density at 20 $^{\circ}$ C on sample #19240; results in kg/m³ | lab | method | value | mark | z(targ) | remarks | |--------------|---------------------|----------------|-------------|---------|--| | 173 | D4052 | 863.9 | | -0.20 | | | 179 | D4052 | 863.8 | | -0.44 | | | 325 | D4052 | 864.0 | С | 0.03 | reported 0.8640 kg/m ³ | | 360 | ISO12185 | 864.1 | | 0.26 | • | | 398 | ISO12185 | 863.96 | | -0.06 | | | 446 | D4052 | 863.9 | | -0.20 | | | 614 | D4052 | 864.2 | | 0.50 | | | 862 | D4052 | 864.0 | | 0.03 | | | 912 | | | | | | | 913 | D4052 | 863.9 | | -0.20 | | | 963 | D4052 | 864.1 | | 0.26 | | | 974 | D4052 | 864.0 | | 0.03 | | | 1137 | D.4050 | | | | | | 1146 | D4052 | 864.0 | | 0.03 | | | 1178 | ISO12185 | 864.0 | | 0.03 | | | 1262
1264 | ISO3675 | 863.9
863.6 | C | -0.20 | first reported 0.8636 kg/m ³ | | 1264 | D4052 | 863.6 | С | -0.90 | first reported 0.8636 kg/m ³ | | 1304
1306 | D4052 | 864.0 | | 0.03 | | | 1326 | D4052
D4052 | 863.9 | | -0.20 | | | 1442 | ISO3675 | 864.0 | | 0.20 | | | 1444 | 1000010 | | | 0.03 | | | 1461 | | | W | | test result withdrawn. Reported 862.1 | | 1478 | ISO12185 | 863.7 | •• | -0.67 | tot. Joan malarami. Hoportou OOL.1 | | 1513 | ISO12185 | 864.113 | | 0.29 | | | 1560 | 10012100 | | | | | | 1626 | | | | | | | 1660 | D7042 | 836.6 | C,R(0.01) | -63.90 | first reported 0.8636 kg/m ³ | | 1687 | ISO12185 | 863.96 | , , , | -0.06 | | | 1702 | ISO3675 | 864.0 | С | 0.03 | first reported 866.9 | | 1719 | | | | | | | 1743 | | 863.0 | | -2.30 | | | 1801 | ISO3675 | 862.0 | R(0.01) | -4.64 | | | 1885 | D1298 | 862.0 | C,R(0.01) | -4.64 | reported 0.862 kg/m ³ | | 1890 | ISO12185 | 864.0 | | 0.03 | | | 6000 | 10040405 | | | | | | 6015 | ISO12185 | 864.20 | | 0.50 | | | 6048 | ISO12185 | 864.0 | | 0.03 | | | 6053 | 10010105 |
064 F | | 1.20 | | | 6067
6071 | ISO12185 | 864.5 | | 1.20 | | | 6071
6080 | D4052 | 864.0 | | 0.03 | | | 6085 | D7042 | 864.16 | | 0.03 | | | 6088 | ISO3675 | 862.5 | C,R(0.01) | -3.47 | first reported 8620.5 | | 6099 | ISO12185 | 864.7 | J,1 ((0.01) | 1.66 | mot reported 0020.0 | | 6141 | D4052 | 863.9 | | -0.20 | | | 6167 | = . ~~ | | | | | | 6169 | ISO12185 | 864.08 | | 0.22 | | | 6181 | ISO12185 | 864.0 | | 0.03 | | | 6253 | | | | | | | 6278 | D1298 | 868 | C,R(0.01) | 9.36 | first reported 0.8680 kg/m ³ | | 6280 | ISO12185 | 850 | C,R(0.01) | -32.64 | first reported 0.85 kg/m ³ | | | | | | | | | | normality | not OK | | | | | | n | 33 | | | | | | outliers | 6 | | | | | | mean (n) | 863.987 | | | | | | st.dev. (n) | 0.2641 | | | | | | R(calc.) | 0.740 | | | Compare B(D4052:19a) = B(ISO42495:06) = 0.5 | | | st.dev.(ISO3675:98) | 0.4286 | | | Compare R(D4052:18a) = R(ISO12185:96) = 0.5
Compare R(D7042:16e3) = 1.3 | | | R(ISO3675:98) | 1.2 | | | Compare K(D7042. 10e3) = 1.3 | ### Determination of Di-electric Dissipation Factor (DDF) at 90°C on sample #19240 | lab | method | value | mark | z(targ) | frequency | | |--------------|--------------------------------------|-----------------------|---------|----------------|------------|-------------------------| | 173 | | | | | | | | 179 | | | | | | | | 325 | ENC0047 | 0.00400 | | 4.00 | | | | 360
398 | EN60247
EN60247 | 0.00108
0.000445 | | 1.00
-0.29 | 50
60 | | | 396
446 | EN60247
EN60247 | 0.000445 | | -0.29 | 50 | | | 614 | LN00247 | 0.0004 | | -0.50 | | | | 862 | IEC60247 | 0.0003 | | -0.58 | | | | 912 | | | | | | | | 913 | | | | | | | | 963 | EN60247 | 0.0007 | | 0.23 | | | | 974 | EN60247 | 0.000801 | | 0.44 | 60 | | | 1137 | | | | | | | | 1146 | IE000047 | 0.00000 | | 0.74 | | | | 1178
1262 | IEC60247
EN60247 | 0.00022
0.00026 | | -0.74
-0.66 | 50.0
50 | | | 1262 | IEC60247 | 0.00026 | | -0.00 | 50 | | | 1304 | in house-125 | 0.000439 | | -0.30 | 50 | | | 1306 | IEC60247 | 0.000859 | | 0.55 | | | | 1326 | EN60247 | 0.000566 | | -0.04 | 50 | | | 1442 | IEC60247 | 0.000599 | | 0.03 | 50 | | | 1444 | | | | | | | | 1461 | EN60247 | 0.000158 | _ | -0.87 | | | | 1478 | IEC60247 | 0.000308 | С | -0.56 | 50 | first reported 0.003087 | | 1513 | IEC60247 | 0.00053 | | -0.11 |
50 | | | 1560
1626 | IEC60247
IEC60247 | 0.000625
0.00029 | | 0.08
-0.60 | | | | 1660 | IEC60247 | 0.00023 | | 1.61 | 60 | | | 1687 | EN60247 | 0.00098 | | 0.80 | 50 | | | 1702 | IEC60247 | 0.00033 | | -0.52 | | | | 1719 | IEC60247 | 0.0026 | R(0.01) | 4.09 | 50 | | | 1743 | IEC60247 | 0.00028 | С | -0.62 | | first reported 0.00487 | | 1801 | EN60247 | 0.000701 | | 0.23 | | | | 1885 | IEC60247 | 0.00096 | | 0.76 |
FO | | | 1890
6000 | IEC60247 | 0.000293 | | -0.60
 | 50
 | | | 6015 | EN60247 | 0.0003720 | | -0.43 | 50 | | | 6048 | EN60247 | 0.000174 | | -0.84 | 60 | | | 6053 | | | | | | | | 6067 | IEC60247 | 0.001188 | | 1.22 | 50 | | | 6071 | | | | | | | | 6080 | IEC60247 | 0.002105 | R(0.01) | 3.08 | | | | 6085
6088 | IEC60247
IEC60247 | 0.00026
0.00028 | | -0.66
-0.62 | | | | 6099 | IEC60247 | 0.00028 | | 1.17 | | | | 6141 | IEC60247 | 0.000389 | | -0.40 | 60 | | | 6167 | | | | | | | | 6169 | | | | | | | | 6181 | | | | | | | | 6253 | | | | | | | | 6278 | IEC60247 | 0.00144 | 0 | 1.73 | | final namental 0.077 | | 6280 | IEC60247 | 0.000770 | С | 0.37 | | first reported 0.077 | | | normality | OK | | | | | | | n | 34 | | | | | | | outliers | 2 | | | | | | | mean (n) | 0.000586 | | | | | | | st.dev. (n) | 0.0003592 | | | | | | | R(calc.) | 0.001006 | | | | | | | st.dev.(EN60247:04)
R(EN60247:04) | 0.0004929
0.001380 | | | | | | | 11(1100241.04) | 0.001000 | | | | | ### Determination of Specific Resistance at 90°C on sample #19240; results in $G\Omega m$ | lab | method | value | mark | z(targ) | remarks | |--------------|---------------------|-----------------|----------|----------------|---------------------| | 173 | | | | | | | 179 | | | | | | | 325 |
ENG0247 | 244.0 | | 1.06 | | | 360 | EN60247 | 341.9
528.22 | | -1.06
-0.18 | | | 398
446 | EN60247 | 526.22 | | -0.10 | | | 614 | | | | | | | 862 | | | | | | | 912 | | | | | | | 913 | | | | | | | 963 | | | | | | | 974 | EN60247 | 806.4 | | 1.13 | | | 1137 | | | | | | | 1146 | IE000047 | 040.0 | | 4.05 | | | 1178 | IEC60247 | 916.3 | | 1.65 | | | 1262
1264 | EN60247
IEC60247 | 820.2
707.1 | С | 1.19
0.66 | first reported 3690 | | 1304 | in house-125 | 3195 | R(0.01) | 12.37 | instreported 9000 | | 1306 | IEC60247 | 254.68 | 11(0.01) | -1.47 | | | 1326 | | | | | | | 1442 | IEC60247 | 1114.510 | | 2.58 | | | 1444 | | | | | | | 1461 | | | | | | | 1478 | IEC60247 | 782.92 | | 1.02 | | | 1513 | IEC60247 |
720 27 | | 0.70 | | | 1560
1626 | IEC60247 | 732.37
 | | 0.78 | | | 1660 | IEC60247 | 311.40 | | -1.20 | | | 1687 | EN60247 | 303.28 | | -1.24 | | | 1702 | IEC60247 | 481.18 | | -0.40 | | | 1719 | IEC60247 | 134.85 | | -2.03 | | | 1743 | IEC60247 | 145 | | -1.98 | | | 1801 | 15000015 | | | | | | 1885 | IEC60247 | 273 | D(0.04) | -1.38 | | | 1890
6000 | IEC60247 | 2245 | R(0.01) | 7.90
 | | | 6015 | EN60247 | 1815.0 | R(0.01) | 5.88 | | | 6048 | LINOUZHI | | 11(0.01) | | | | 6053 | | | | | | | 6067 | IEC60247 | 474.046 | | -0.44 | | | 6071 | | | | | | | 6080 | IEC60247 | 635.00 | | 0.32 | | | 6085 | | 750 | | 0.06 | | | 6088
6099 | IEC60247 | 750
569.59 | | 0.86
0.01 | | | 6141 | IEC60247 | 950.31 | | 1.81 | | | 6167 | 12000247 | | | | | | 6169 | | | | | | | 6181 | | | | | | | 6253 | | | | | | | 6278 | IEC60247 | 24715 | R(0.01) | 113.68 | | | 6280 | IEC60247 | 430 | | -0.64 | | | | normality | ОК | | | | | | n | 22 | | | | | | outliers | 4 | | | | | | mean (n) | 566.47 | | | | | | st.dev. (n) | 275.377 | | | | | | R(calc.) | 771.06 | | | | | | st.dev.(EN60247:04) | 212.425 | | | | | | R(EN60247:04) | 594.79 | | | | ### Determination of Flash Point C.O.C. on sample #19240; results in °C | lab | method | value | mark z(targ) | remarks | |--------------|-----------------|--------|--------------|---------------------------| | 173 | D92 | 157 | 0.23 | | | 179 | D92 | 149 | -1.01 | | | 325 | D92 | 157 | 0.23 | | | 360 | ISO2592 | 152 | -0.54 | | | 398 | 1002332 | | -0.54 | | | 446 | | | | | | 614 | | | | | | 862 | D92 | 158 | 0.39 | | | 912 | D92 | | 0.39 | | | 913 | | | | | | 963 | D92 | 154 | -0.23 | | | | | | 0.39 | | | 974 | D92 | 158.0 | | | | 1137 | | | | | | 1146 | | | | | | 1178 | D02 | 156 | 0.00 | | | 1262 | D92 | 156 | 0.08 | | | 1264 | D92 | 152 | -0.54 | | | 1304 | | | | | | 1306 | | | | | | 1326 | D03 | 162 |
1 17 | | | 1442 | D92 | 163 | 1.17 | | | 1444 | | | | | | 1461 | | | | | | 1478 | | | | | | 1513 | | | | | | 1560 | | | | | | 1626 | DOS | 154 | -0.23 | | | 1660 | D92 | 134 | -0.23 | | | 1687
1702 | | | | | | 1702 | | | | | | 1743 | ISO2592 | 158 | 0.39 | | | 1801 | 1302392 | | 0.39 | | | 1885 | | | | | | 1890 | | | | | | 6000 | | | | | | 6015 | ISO2592 | 158.0 | 0.39 | | | 6048 | ISO2592 | 146 | -1.48 | | | 6053 | 1002332 | | -1.40 | | | 6067 | | | | | | 6071 | | | | | | 6080 | D92 | 154.0 | -0.23 | | | 6085 | D32 | 104.0 | -0.20 | | | 6088 | | | | | | 6099 | | | | | | 6141 | D92 | 162 | 1.01 | | | 6167 | D32 | | 1.01 | | | 6169 | | | | | | 6181 | | | | | | 6253 | | | | | | 6278 | | | | | | 6280 | | | | | | 0200 | | | | | | | normality | OK | | | | | n | 16 | | | | | outliers | 0 | | | | | mean (n) | 155.50 | | | | | st.dev. (n) | 4.412 | | | | | R(calc.) | 12.35 | | | | | st.dev.(D92:18) | 6.429 | | | | | R(D92:18) | 18 | | R(D92:18) = R(ISO2592:17) | | | (002.10) | 10 | | 11/202.10) 11/1002002.11) | ### Determination of Flash Point PMcc on sample #19240; results in °C | lab | method | value | mark | z(targ) | remarks | |--------------|-----------------------|--------|------|---------|-------------------------------| | 173 | | | | | | | 179 | D93 | 148 | | 0.24 | | | 325 | D93-A | 151.0 | | 1.04 | | | 360 | ISO2719-A | 145.0 | | -0.57 | | | 398 | | | | | | | 446 | D93-A | 147.5 | | 0.10 | | | 614 | | | | | | | 862 | D93-A | 144 | | -0.83 | | | 912 | | | | | | | 913 | D93-A | 154 | | 1.84 | | | 963 | D93-A | 146 | | -0.30 | | | 974 | D93-A | 146.0 | | -0.30 | | | 1137 | | | | | | | 1146 | D93-A | 142.5 | | -1.24 | | | 1178 | | | | | | | 1262 | ISO2719-A | 150.0 | | 0.77 | | | 1264 | D93-A | 148 | | 0.24 | | | 1304 | in house-115 | 144.1 | | -0.81 | | | 1306 | D93-A | 144 | | -0.83 | | | 1326 | D93-A | 146.0 | | -0.30 | | | 1442 | ISO2719-A | 145.0 | | -0.57 | | | 1444
1461 | ISO2719-A | 152 | | 1.31 | | | 1478 | ISO2719-A | 145.5 | | -0.43 | | | 1513 | ISO2719-A | 154.0 | | 1.84 | | | 1560 | ISO2719-A | 149.5 | | 0.64 | | | 1626 | D93-A | 142.0 | | -1.37 | | | 1660 | D93-A | 148 | | 0.24 | | | 1687 | 20071 | | | | | | 1702 | ISO2719-A | 147.5 | | 0.10 | | | 1719 | | | | | | | 1743 | ISO2719-A | 142 | | -1.37 | | | 1801 | | | | | | | 1885 | | | | | | | 1890 | | | | | | | 6000 | ISO2719-A | 148.64 | | 0.41 | | | 6015 | ISO2719-A | 150.0 | | 0.77 | | | 6048 | D93-A | 145 | | -0.57 | | | 6053 | | | | | | | 6067 | | | | | | | 6071 | | | | | | | 6080 | D93-A | 148.0 | | 0.24 | | | 6085 | | | | | | | 6088 | | | | | | | 6099 | | | | | | | 6141
6167 | | | | | | | 6169 | ISO2719-A | 146.0 | | -0.30 | | | 6181 | 10021 19-A | 140.0 | | -0.50 | | | 6253 | | | | | | | 6278 | | | | | | | 6280 | | | | | | | 0200 | | | | | | | | normality | OK | | | | | | n | 28 | | | | | | outliers | 0 | | | | | | mean (n) | 147.12 | | | | | | st.dev. (n) | 3.249 | | | | | | R(calc.) | 9.10 | | | | | | st.dev.(ISO2719-A:16) | 3.731 | | | | | | R(ISO2719-A:16) | 10.45 | | | R(ISO2719-A:16) = R(D93-A:18) | | | | | | | | ### Determination of Interfacial Surface Tension on sample #19240; results in mN/m | lab | method | value | mark | z(targ) | remarks | |--------------|------------------|--------------|---------|----------------|---------| | 173 | | | | | | | 179 | D971 | 48 | | 0.43 | | | 325 | | | | | | | 360 | D971 | 47.8 | | 0.31 | | | 398 | | | | | | | 446 | D074 | | | | | | 614 | D971 | 51 | | 2.21 | | | 862 | D971 | 48.5 | | 0.73 | | | 912
913 | | | | | | | 963 | D971 | 48.1 | | 0.49 | | | 974 | D971 | 48.6 | | 0.49 | | | 1137 | D37 1 | | | | | | 1146 | | | | | | | 1178 | D971 | 47.2 | | -0.04 | | | 1262 | D971 | 46.4 | | -0.52 | | | 1264 | D971 | 42.8845 | | -2.60 | | | 1304 | in house-123 | 50.10 | | 1.67 | | | 1306 | D971 | 46.93 | | -0.20 | | | 1326 | D971 | 47.776 | | 0.30 | | | 1442 | IEC92961 | 46.64 | | -0.38 | | | 1444 | | | | | | | 1461 | | | | | | | 1478 | D971 | 47.0 | | -0.16 | | | 1513 | D971 | 48.44 | | 0.69 | | | 1560 | D971 | 48.8 | | 0.90 | | | 1626 | D971 | 45.86 | | -0.84 | | | 1660 | D971 | 47.1 | | -0.10 | | | 1687 | D971 | 45.6 | | -0.99 | | | 1702 | D971 | 47.885 | D(0.05) | 0.36 | | | 1719
1743 | D2285
D971 | 41
45.7 | R(0.05) | -3.72
-0.93 | | | 1801 | D971 | 44.09 | | -0.93 | | | 1885 | D971 | 45.9 | | -0.81 | | | 1890 | D37 1 | | | -0.01 | | | 6000 | | | | | | | 6015 | D971 | 47.120 | | -0.09 | | | 6048 | D971 | 48.3 | | 0.61 | | | 6053 | | | | | | | 6067 | D971 | 45.5 | | -1.05 | | | 6071 | | | | | | | 6080 | D971 | 52.07 | | 2.84 | | | 6085 | D971 | 38.705 | R(0.05) | - 5.08 | | | 6088 | ISO6295 | 46.28 | | -0.59 | | | 6099 | EN14210 | 47.2 | | -0.04 | | | 6141 | D971 | 48.54 | | 0.75 | | | 6167 | =1144040 | | | | | | 6169 | EN14210 | 46.747 | | -0.31 | | | 6181 | | | | | | | 6253 | D074 |
45 7 | | 0.03 | | | 6278
6280 | D971 | 45.7
46.3 | | -0.93 | | | 0200 | | 46.3 | | -0.58 | | | | normality | suspect | | | | | | n | 33 | | | | | | outliers | 2 | | | | | | mean (n) | 47.275 | | | | | | st.dev. (n) | 1.8064 | | | | | | R(calc.) | 5.058 | | | | | | st.dev.(D971:12) | 1.6884 | | | | | | R(D971:12) | 4.727 | | | | | | • | | | | | ### Determination of Kinematic Viscosity at 40°C on sample #19240; results in mm²/s | lab | method | value | mark | z(targ) | remarks | |--------------|-----------------------|----------|-----------|-----------|---------------------------| | 173 | D445 | 9.064 | | 1.21 | | | 179 | D445 | 8.99 | | -0.68 | | | 325 | D445 | 8.9815 | | -0.89 | | | 360 | ISO3104 | 9.0266 | | 0.26 | | | 398
446 | D445 | 9.097 | | 2.05 | | | 446
614 | D445 | 9.097 | | 2.05 | | | 862 | D445 | 9.0346 | | 0.46 | | | 912 | - | | | | | | 913 | D445 | 8.941 | С | -1.92 | first reported 8.108 | | 963 | D445 | 9.033 | | 0.42 | | | 974 | D445 | 8.899 | | -2.99 | | | 1137
1146 | D445 | 9.0633 | |
1.19 | | | 1146 | D445
ISO3104 | 9.0633 | | 3.07 | | | 1262 | ISO3104 | 9.013 | | -0.09 | | | 1264 | D7042 | 9.0836 | | 1.71 | | | 1304 | | | | | | | 1306 | D445 | 8.970 | | -1.19 | | | 1326 | D445 | 9.030 | 0 | 0.34 | first new sets 17 0040 | | 1442 | D7042 | 9.0447 | С | 0.72 | first reported 7.6918 | | 1444
1461 | ISO3104 | 9.0953 | | 2.00 | | | 1478 | D7042 | 9.0933 | | 0.17 | | | 1513 | ISO3104 | 8.981 | | -0.91 | | | 1560 | ISO3104 | 8.992 | | -0.63 | | | 1626 | D445 | 9.004 | | -0.32 | | | 1660 | D7042 | 8.9685 | | -1.22 | | | 1687 | D7040 | 0.0442 | | 0.71 | | | 1702
1719 | D7042 | 9.0443 | | 0.71
 | | | 1719 | D7279 corr. to D445 | 8.620 | C,R(0.01) | -10.09 | first reported 8.690 | | 1801 | ISO3104 | 9.40 | R(0.01) | 9.76 | | | 1885 | | | , | | | | 1890 | ISO3104 | 8.9783 | | -0.97 | | | 6000 | ISO3104 | 9.009531 | | -0.18 | | | 6015 | D445 | 0.002 | | 0.25 | | | 6048
6053 | D445 | 9.003 | | -0.35
 | | | 6067 | ISO3104 | 8.983 | | -0.85 | | | 6071 | | | | | | | 6080 | D445 | 9.087 | | 1.79 | | | 6085 | D7042 | 9.0236 | | 0.18 | | | 6088 | | | | | | | 6099 | D7279 corr. to D445 | 9.0663 | | 1 20 | | | 6141
6167 | טו צו או טוו. וט 1445 | 8.9663 | | -1.28
 | | | 6169 | EN16896 | 8.9724 | | -1.12 | | | 6181 | ISO3104 | 8.99 | | -0.68 | | | 6253 | | | | | | | 6278 | D445 | 8.557 | R(0.01) | -11.70 | | | 6280 | | | | | Only D445 to star with | | | normality | OK | | | Only D445 test results OK | | | normality
n | 32 | | | 14 | | | outliers | 3 | | | 1 | | | mean (n) | 9.017 | | |
9.014 | | | st.dev. (n) | 0.0507 | | | 0.0558 | | | R(calc.) | 0.142 | | | 0.156 | | | st.dev.(D445:19) | 0.0393 | | | 0.0393 | | Compa | R(D445:19) | 0.110 | | | 0.110 | | Сопра | R(ISO3104:96) | 0.069 | | | | | | R(D7042:16e3) | 0.213 | | | | | | , / | | | | | ### Determination of Water on sample #19240; results in mg/kg | lab | method | value | mark | z(targ) | remarks | |--------------|-------------------------|-----------------|-----------|-----------------------|--| | 173 | D6304-C | <10 | | | | | 179 | D1533 | <10 | | | | | 325 | D6304-C | 18 | R(0.01) | 6.41 | | | 360 | EN60814 | 7.6 | , | -0.38 | | | 398 | D6304-C | 12.3 | | 2.69 | | | 446 | IEC60814 | 7 | | -0.77 | | | 614 | IEC60814 | 10 | | 1.19 | | | 862 | D6304-A | 16 | R(0.05) | 5.11 | | | 912 | | | | | | | 913 | | | | | | | 963 | D1533 | 14 | | 3.80 | | | 974 | D1533 | 22 | C,R(0.01) | 9.02 | first reported 14 | | 1137 | | | | | | | 1146 | D6304-C | 6 | | -1.42 | | | 1178 | IEC60814 | 8.3 | | 0.08 | | | 1262 | EN60814 | 8.6 | | 0.28 | | | 1264 | D1533 | 9.766 | | 1.04 | | | 1304 | in house-121 | 7.5 | | -0.44 | | | 1306 | D1533 | 7.65 | | -0.34 | | | 1326 | 15000044 |
7.00 | | | | | 1442 | IEC60814 | 7.00 | | -0.77 | | | 1444 | | | | | | | 1461 | 15000044 | | | | | | 1478 | IEC60814 | 6.8 | | -0.90 | | | 1513 | IEC60814 | 6.4 | | -1.16 | | | 1560 | IEC60814 | 5.5 | | -1.75
1.06 | | | 1626
1660 | IEC60814 | 9.8
5 | | 1.06
- 2.07 | | | | IEC60814 | 8.2 | | 0.01 | | | 1687
1702 | EN60814
IEC60814 | 8.6 | | 0.01 | | | 1719 | IEC60814 | 6.7 | | -0.96 | | | 1743 | IEC60814 | 6 | | -1.42 | | | 1801 | EN60814 | 8.75 | | 0.37 | | | 1885 | D1533 | 10 | | 1.19 | | | 1890 | IEC60814 | 9.19 | | 0.66 | | | 6000 | | | | | | | 6015 | | | | | | | 6048 | ISO12937 | 6 | | -1.42 | | | 6053 | IEC60814 | 32.5 | C,R(0.01) | 15.88 | first reported 14.7 | | 6067 | IEC60814 | 8.3 | . , | 0.08 | · | | 6071 | D1533 | 7.0 | | -0.77 | | | 6080 | D1533 | 12 | | 2.49 | | | 6085 | IEC60814 | 6.6924 | | -0.97 | | | 6088 | D1533 | 10 | С | 1.19 | first reported as Kinematic Viscosity at 40°C | | 6099 | IEC60814 | 7.4 | | -0.51 | | | 6141 | D1533 | 7.25 | | -0.61 | | | 6167 | | | | | | | 6169 | | | | | | | 6181 | ISO12937 | 8.6 | | 0.28 | | | 6253 | | | | | | | 6278 | D1533 | 7.75 | | -0.28 | | | 6280 | IEC60814 | 8.58 | | 0.26 | | | | | m = 4 C1/ | | | | | | normality | not OK | | | | | | n
outliere | 35
4 | | | | | | outliers | 4 | | | | | | mean (n)
st.dev. (n) | 8.178
1.9593 | | | | | | R(calc.) | 5.486 | | | Compare R(D1533:12) = 14 | | | st.dev.(EN60814:98) | 1.5320 | | | Compare R(D1333.12) = 14
Compare R(D6304-C:16e1) = 59.602, range 10-25000 | | | R(EN60814:98) | 4.290 | | | Compare R(ISO12937:00) = 19.666 | | | , = 1000 17.00) | 55 | | | 55pa. 5 1 (100 12001.00) | Determination of 2,6-Ditertiary-butyl phenol (DBP) and 2,6-Ditertiary-butyl paracresol (DBPC); results in %M/M and determination of Dibenzyl disulphide (DBDS), Benzotriazole (BTA) and Irgamet 39; results in mg/kg, all on sample #19240 | lab | DBP | DBPC | DBDS | ВТА | Irgamet 39 | remarks | |------|--------------|----------------|--------------|--------------|--------------|---------| | 173 | | | | | | | | 179 | | | | | | | | 325 | | | | | | | | 360 | | 0.01 | | | | | | 398 | | | | | | | | 446 | | | | | | | | 614 | | | | | | | | 862 | <0.05 | <0.01 | 11.2 | | | | | 912 | | | | | | | | 913 | | | | | | | | 963 | <0.02 | | | | <5 | | | 974 | | | | | | | | 1137 | | | | | | | | 1146 | | | | | | | | 1178 | | 0.001 | | | | | | 1262 | | 0 | | | | | | 1264 | Not detected | | Not detected | Not detected | Not detected | | | 1304 | | <0.01 | | | | | | 1306 | | | | | | | | 1326 | | | | | | | | 1442 | <0,0001 | <0,03 | <5 | <0,04 | <5 | | | 1444 | | | | | | | | 1461 | | | | | | | | 1478 | | 0.00 | | | | | | 1513 | | <0,01 | <5 | | <5 | | | 1560 | | Not detectable | | | | | | 1626 | | 0.00 | | | | | | 1660 | 0.00 | 0.00 | 0 | 0 | 0 | | | 1687 | | | | | | | | 1702 | | Not Detected | <5 | | <1 | | | 1719 | | | | | | | | 1743 | | | <3 | | | | | 1801 | | 0.02 | | | | | | 1885 | <0.05 | | | | | | | 1890 | | | | | | | | 6000 | | | | | | | | 6015 | | 0.0000 | | | | | | 6048 | | | | | | | | 6053 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 6067 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 6071 | | | | | | | | 6080 | | <0.1 | <5 | <10 | <10 | | | 6085 | | | | | | | | 6088 | | | | | | | | 6099 | | <0.05 | 0 | 0 | | | | 6141 | | 0 | 0 | 0 | 0 | | | 6167 | | | | | | | | 6169 | | | | | | | | 6181 | | | | | | | | 6253 | 0 | | | | | | | 6278 | 0 | | | | | | | 6280 | | | | | | | ### Number of participants per country - 3 labs in AUSTRALIA - 2 labs in BELGIUM - 4 labs in BULGARIA - 2 labs in CHINA, People's Republic - 1 lab in CROATIA - 1 lab in FRANCE - 6 labs in GERMANY - 1 lab in GREECE - 1 lab in HONG KONG - 2 labs in INDIA - 2 labs in ITALY - 1 lab in KUWAIT - 1 lab in MALAYSIA - 1 lab in MOROCCO - 1 lab in NETHERLANDS - 1 lab in NEW ZEALAND - 1 lab in PHILIPPINES - 1 lab in PORTUGAL - 1 lab in QATAR - 2 labs in SAUDI ARABIA - 1 lab in SINGAPORE - 1 lab in SLOVENIA - 1 lab in SOUTH AFRICA - 1 lab in SOUTH KOREA - 2 labs in SPAIN - 1 lab in SWEDEN - 1 lab in SWITZERLAND - 1 lab in TURKEY - 5 labs in UNITED ARAB EMIRATES - 3 labs in UNITED KINGDOM - 2 labs in UNITED STATES OF AMERICA #### **Abbreviations** C = final test result after checking of first reported suspect test result D(0.01) = outlier in Dixon's outlier test D(0.05) = straggler in Dixon's outlier test G(0.01) = outlier in Grubbs' outlier test G(0.05) = straggler in Grubbs' outlier test DG(0.01) = outlier in Double Grubbs' outlier test DG(0.05) = straggler in Double Grubbs' outlier test R(0.01) = outlier in Rosner's outlier test R(0.05) = straggler in Rosner's outlier test E = possibly an error in calculations W = test result withdrawn on request of participant ex = test result excluded from statistical evaluation fr. = first reported n.a. = not applicable n.e. = not evaluated n.d. = not detected SDS = Safety Data Sheet #### Literature - 1 iis Interlaboratory Studies, Protocol for the Organisation, Statistics and Evaluation, June 2018 - 2 prNEN 12766-2:00 - 3 ASTM E178:02 - 4 ASTM E1301:03 - 5 ISO 5725:86 - 6 ISO 5725, parts 1-6, 1994 - 7 ISO13528:05 - 8 M. Thompson and R. Wood, J. AOAC Int, 76, 926, (1993) - 9 W.J. Youden and E.H. Steiner, Statistical Manual of the AOAC, (1975) - 10 IP 367:84 - 11 DIN 38402 T41/42 - 12 P.L. Davies, Fr. Z. Anal. Chem, 331, 513, (1988) - 13 J.N. Miller, Analyst, <u>118</u>, 455, (1993) - 14 Analytical Methods Committee Technical Brief, No 4, January 2001 - 15 P.J. Lowthian and M. Thompson, the Royal Society of Chemistry, Analyst, 127, 1359-1364 (2002) - Bernard Rosner, Percentage Points for a Generalized ESD Many-Outlier Procedure, Technometrics, <u>25(2)</u>, 165-172, (1983) - 17 iis memo 1702 'Evaluation of the reproducibility of the Breakdown Voltage in Transformer Oils (fresh and used) as per EN60156:1998 based on Proficiency Tests performed from 2001 till 2016, December 2017